IoT malware detection architecture using a new channel boosted and pressed CNN

  • Madakam, S., Ramaswamy, R. & Tripathi, S. Internet of Things (IoT): A Literature Review. J. Compute. Common. 30164. https://doi.org/10.4236/jcc.2015.35021 (2015).

    Article

    Google Scholar

  • Vuran, MC, Salam, A., Wong, R. & Irmak, S. Underground Internet of Things in Precision Agriculture: Architectural and Technological Aspects. Ad Hoc Network. 81160–173. https://doi.org/10.1016/j.adhoc.2018.07.017 (2018).

    Article

    Google Scholar

  • Zafar, MM et al. Detection of tumor-infiltrating lymphocytes in CD3 and CD8 stained histopathology images using two-phase deep CNN. Photodyn. The. 37102676. https://doi.org/10.1016/j.pdpdt.2021.102676 (2022).

    CASE
    Article
    PubMed

    Google Scholar

  • Islam, SMR, Kwak, D., Kabir, MH, Hossain, M. & Kwak, KS The Internet of Things for Healthcare: A Comprehensive Survey. IEEE Access 3678–708. https://doi.org/10.1109/ACCESS.2015.2437951 (2015).

    Article

    Google Scholar

  • Zahoor, MM, Qureshi, SA, Khan, SH & Khan, A. A new brain tumor analysis based on deep hybrid learning and ensemble learning using MRI (2022). https://arxiv.org/abs/2201.05373

  • Iyer, B. & Patil, N. IoT-enabled tracking and surveillance sensor for military applications. Int. J.Syst. Insured. Eng. Managed. 9(6), 1294-1301. https://doi.org/10.1007/s13198-018-0727-8 (2018).

    Article

    Google Scholar

  • Mikhalevich, IF & Trapeznikov, VA Critical Infrastructure Security: Aligning Views. In 2019 Signal generator processing systems in the field of on-board communication. SOSG 2019 1–5 (2019). https://doi.org/10.1109/SOSG.2019.8706821

  • Shao, Z., Yuan, S. & Wang, Y. Adaptive e-learning for IoT botnet detection. Inf. Science. (New York) 57484–95. https://doi.org/10.1016/j.ins.2021.05.076 (2021).

    Article

    Google Scholar

  • Ngo, QD, Nguyen, HT, Le, VH & Nguyen, DH A survey of IoT malware and detection methods based on static features. TIC Express 6(4), 280–286. https://doi.org/10.1016/j.icte.2020.04.005 (2020).

    Article

    Google Scholar

  • Vignau, B., Khoury, R., Hallé, S. & Hamou-Lhadj, A. The evolution of IoT malware, from 2008 to 2019: Study, taxonomy, process simulator and perspectives. J.Syst. Archit. 116102143. https://doi.org/10.1016/j.sysarc.2021.102143 (2021).

    Article

    Google Scholar

  • Assam, M. et al. Detection of exceptional malware variants using deeply optimized feature spaces and machine learning. Appl. Science. 1121. https://doi.org/10.3390/app112110464 (2021).

    CASE
    Article

    Google Scholar

  • Or-Meir, O., Cohen, A., Elovici, Y., Rokach, L. & Nissim, N. Pay Attention: Improving PE Malware Classification Using Intelligence-Based Attention Mechanisms system call analysis. proc. Int. Jt. Conf. Neural network. https://doi.org/10.1109/IJCNN52387.2021.9533481 (2021).

    Article

    Google Scholar

  • Asam, M., Hussain Khan, S., Jamal, T., Zahoora, U. & Khan, A. Malware classification using deep learning.

  • Rafique, MF, Ali, M., Qureshi, AS, Khan, A. & Mirza, AM Malware Classification using Deep Learning based Feature Extraction and Wrapper based Feature Selection Technique, October 2019, accessed: June 20, 2021. [Online]. Available: http://arxiv.org/abs/1910.10958

  • Li, S., Zhang, Q., Wu, X., Han, W. & Tian, ​​Z. APT malware attribution classification method in IoT using machine learning techniques. Secure Common. Network https://doi.org/10.1155/2021/9396141 (2021).

    Article

    Google Scholar

  • Khan, A., Sohail, A., Zahoora, U. & Qureshi, AS A survey of recent architectures of deep convolutional neural networks. Artif. Information. Round. 53(8), 5455–5516. https://doi.org/10.1007/s10462-020-09825-6 (2020).

    Article

    Google Scholar

  • Nataraj, L., Karthikeyan, S., Jacob, G. & Manjunath, BS Malware Images: Visualization and Automatic Classification. ACM Int. Conf. proc. Ser. https://doi.org/10.1145/2016904.2016908 (2011).

    Article

    Google Scholar

  • Ma, Y., Liu, S., Jiang, J., Chen, G. and Li, K. An in-depth study on learning-based PE malware family classification methods, flight. 1, 1. Association for Computing Machinery (2021).

  • Karanja, EM, Masupe, S. & Jeffrey, MG Analyzing Internet of Things malware using image texture features and machine learning techniques. Internet Objects (Netherlands) 9100153. https://doi.org/10.1016/j.iot.2019.100153 (2020).

    Article

    Google Scholar

  • Pa, YM, Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T. & Rossow, C. IoTPOT: Analysis of the Rise of IoT Compromises. In 9th USENIX Work. WOOT 2015 Offensive Technology (2015).

  • Carrillo-Mondéjar, J., Martínez, JL & Suarez-Tangil, G. Characterization of Linux-based malware: recent findings and trends. Future. General calculation. System 110267–281. https://doi.org/10.1016/j.future.2020.04.031 (2020).

    Article

    Google Scholar

  • Cozzi, E., Graziano, M., Fratantonio, Y. & Balzarotti, D. Understanding Linux Malware. In Proceedings of the IEEE Secure Privacy Symposium, flight. 2018-May, 161-175 (2018). https://doi.org/10.1109/SP.2018.00054

  • Palla, TG & Tayeb S. Intelligent detection of Mirai malware in IoT devices. In 2021 IEEE World AI IoT Congress AIIoT 2021420–426 (2021). https://doi.org/10.1109/AIIoT52608.2021.9454215

  • Lily. et al. Ensemble Learning Based Malicious Mining Code Detection in a Cloud Computing Environment. Sim. Model. Practice. The theory 113102391. https://doi.org/10.1016/j.simpat.2021.102391 (2021).

    Article

    Google Scholar

  • Bendiab, G., Shiaeles, S., Alruban, A. & Kolokotronis, N. Network traffic classification of IoT malware using visual representation and deep learning. In Proceedings of the 2020 IEEE Network Softwarization Conference Bridge Gap Between AI Network Softwarization, NetSoft 2020 444–449 (2020). https://doi.org/10.1109/NetSoft48620.2020.9165381.

  • Su, J. et al. Lightweight classification of IoT malware based on image recognition. proc. Int. Calculation. Software Appl. Conf. 2664–669. https://doi.org/10.1109/COMPSAC.2018.10315 (2018).

    Article

    Google Scholar

  • Ren, Z., Wu, H., Ning, Q., Hussain, I. & Chen, B. End-to-end malware detection for Android IoT devices using deep learning. Ad Hoc Network. 101102098. https://doi.org/10.1016/j.adhoc.2020.102098 (2020).

    Article

    Google Scholar

  • Hussain, SJ et al. IMIAD: intelligent malware identification for the Android platform. Int. Conf. Calculation. Inf. Science. CICI 20191–6. https://doi.org/10.1109/ICCISci.2019.8716471 (2019).

    Article

    Google Scholar

  • Naem, H. et al. Malware Detection in the Industrial Internet of Things Based on Hybrid Image Visualization and Deep Learning Model. Ad Hoc Network. 105102154. https://doi.org/10.1016/j.adhoc.2020.102154 (2020).

    Article

    Google Scholar

  • Shafiq, M., Tian, ​​Z., Bashir, AK, Du, X. & Guizani, M. CorrAUC: A Malicious Method of Bot-IoT Traffic Detection in the IoT Network Using Machine Learning Techniques. IEEE J Internet Objects. 8(5), 3242–3254. https://doi.org/10.1109/JIOT.2020.3002255 (2021).

    Article

    Google Scholar

  • Shafiq, M., Tian, ​​Z., Sun, Y., Du, X. & Guizani, M. Selecting an Efficient Machine Learning Algorithm and Bot-IoT Traffic Identification for the Internet objects in the smart city. Future. General calculation. System 107433–442. https://doi.org/10.1016/j.future.2020.02.017 (2020).

    Article

    Google Scholar

  • Shafiq, M., Tian, ​​Z., Bashir, AK, Du, X. & Guizani, M. Identifying malicious IoT traffic using wrapper-based feature selection mechanisms. Calculation. Secured https://doi.org/10.1016/j.cose.2020.101863 (2020).

    Article

    Google Scholar

  • Shorten, C. & Khoshgoftaar, TM An investigation of image data augmentation for deep learning. J. Big Data 61. https://doi.org/10.1186/s40537-019-0197-0 (2019).

    Article

    Google Scholar

  • Wang, J. & Perez, L. The Effectiveness of Data Augmentation in Image Classification Using Deep Learning (2017).

  • Hussain Khan, S., Khan, A., Soo Lee, Y., Hassan, M., and Kyo Jeong, W. MRI segmentation of shoulder muscles using a new deep autoencoder based on regions and edges.

  • Khan, SH, Sohail, A., Khan, A. & Lee, Y.-S. Detection of COVID-19 in chest X-ray images using new channel boosted CNN. Diagnostic 12(2), 267. https://doi.org/10.3390/diagnostics12020267 (2022).

    CASE
    Article
    PubMed
    PubMed Center

    Google Scholar

  • E. Foundation. Iot-Comm-Adoption-Survey-2019 (2020).

  • Wan, TL et al., IoT malware detection based on byte sequences of executable files. In 2020 15th Asian Joint Information Security Conference (AsiaJCIS 2020) 143–150 (2020). https://doi.org/10.1109/AsiaJCIS50894.2020.00033

  • Elmasry, A.IOT_Malware, https://www.kaggle.com/anaselmasry/iot-malware (accessed August 08, 2021).

  • Chicco, D. & Jurman, G. The Benefits of Matthews Correlation Coefficient (MCC) on F1 Score and Accuracy in Assessing Binary 1–13 Classification (2020).

  • Comments are closed.